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ABSTRACT

A model for colliding objects in the asteroidal belt
is formulated. An integro differential equation describing
the evolution of a‘system of parficles undergoing inelastic
collisions and fragmentation is derived and solved for steady
state conditions. It is found that the number density of
particles per unit volume in the mass range m to m + dm is
Am~%dm where A and o are constants (provided that certain
conditions are satisfied). The population index o can then be
derived theoretically; for asteroids and their debris, o = 1.837,

in agreement with an empirical fit to the observed distribution.

Various statistical properties of the distribution can
be derived from the model. It is found that, for asteroidal
objects, catastrophic collisions constitute the most important
physical process determining particle lifetimes and the form of
.the particle distribution for particles sufficiently large that
radiation effects are unimportant. The lifetime of the largest
asteroids is found to be of the same order of magnifude as the
probable lifetime of the solar system, therefore some of the
largest asteroids may have survived since the time of creation;
most smaller ones have not and are collisional fragments,

according to the present model.
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I. INTRODUCTION

It 1s customary in the literature to describe the
distribution of the masses of interplanetary particles by power
law functions. The number of particles in a mass range m to
m + dm 1s then taken to be A m * dm where A and o are constants;
the latter 1s called the population index. Observational evi-
dence in support of such a special form for the number density
function has been advanced,* among others, for radar meteors
(Kaiser, 1961, Southworth, 1967), photographic meteors (Hawkins
and Upton, 1958, Dohnanyi, 1966, 1967a) meteorites (Hawkins 1960)
and asteroids (Kuiper et al, 1958). 1In an effort to understand
the physical significance of population index type number density
functions for interplanetary particles the writer has undertaken
a theoretical treatment of the dynamic interaction of these
particles. The physical model adopted i1s one where the interplanetary
objects undergo mutual inelastic collisions resulting in frag-
mentation. Results of the analysis indicate that under plausible
simplifying assumptions such a system of particles does 1ndeed evolve
into a population index type distribution (cf. Dohnanyi, 1967 b and c).
The results are then applied to estimate the number density and
other statistical properties of debris in the asteroidal belt.

Section II of this paper is a brilef discussion of the
empirical distribution of observed asteroids published by
Ruiper et al (1958) together with a discussilon of some of the
statistical properties of power law distributions.

¥For a review of earlier work, see e.g., Lovell, 1954.
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Section IITI-A of this paper is a discussion of the
model crushing law when two objects inelastically collide.
Experimental results by Gault et al (1965) and Gault and
Heitowit (1963) are used for hypervelocity impact into semi-
infinite targets; the results are then generalized for impacts

between objects with similar masses.

Sectlon IIT-B is the mathematical formulation of the
model. An intergro differential equation (which will be referred
to as the collision equation) is derived, expressing the time
rate of change of the number density of particles in a given
mass range due to the processes of erosion, catastrophic colli-
sions,and of particle creation in the same mass range by the

collisional fragmentation of larger objects.

Section IV 1s a discussion of a mathematical model
for which the collision equation is satisfied by a population
"index type solution. The result is that if the distribution
has reached approximately steady state conditions, then a
population index type solution does indeed satisfy the collision
equation in a mass range sufficiently far removed from the high
and low mass end points. The value of the population index is
then calculated for various values of the average collisional
velocity and found to be remarkably insensitive to the value of
the physical parameters. The stability of the solution is also
discussed.

The present results are applied in Section V to the
distribution of asteroids and their debris. It is found that
the theoretical value of the population index for a steady
state distribution of particles moving with asteroidal veloci-
ties is within the margin of error of an empirical fit to the
observed asteroids catalogued by Kuiper et al (1958). The
theoretical number density function is then normalized to the
observed asteroids; the resulting function forms the basis of
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calculating various statistical properties of the distribution.
Among these are particle creation and destructlon rates, the

mass loss due to radiation effects, particle life times and
eroslon rates.

II. OBSERVATIONAL EVIDENCE

This section 1s a discussion of the distribution of
known asteroids together with some of thelr statistical physi-
cal properties. In thelr survey of asteroids, Kulper et al
(1958) have published the distribution of 1554 asteroids as a
function of absolute photographic magnitude g per half magni-
tude intervals.

The results of Kuiper et al (1958) .are plotted in
Fig. 1. The solid line histogram is the number of asteroids
in each half magnitude interval as a function of g. A mass

- scale, based on a geometric albedo of .2 x 3i; and material
density of 3.5 x 103 kg/m3 has been associated, by the
writer, with the magnitude scale. The upper 1limit on the
geometric albedo represents a completely white smooth surface
and the lower 1imift corresponds to basalt. The nominal value
of .2 is the mean of the estimated geometric albedos of the
asteroids Ceres, Pallas, Juno and Vesta¥* (see, e.g. Sharonov
1964). The results is

¥This is a revision of the writer's earlier treatment
(Dohnanyi, 1967) where asteroids were treated as Lambert reflectors
with a spherical albedo of .1. While the uncertainties in the
photometric properties of asteroids are considerable we believe
this present treatment of asterold masses is somewhat more
realistic. The present results are, however, within the margins

of uncertainty previously estimated by the writer.
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logyy m = 22.67 F .72 - .6bg

where m is the mass of the asteroid (in Kg) having an absolute
photographic magnitude g (i.e. relative photographic magnitude
at a distance of 1 AU from both the earth and the sun).

The results of Kuiper et al are complete up to a
limiting magnitude of g < 9.5, i.e., the observed number of
these objects is believed to equal the true number. Above
g 2 9.5, the difference between the true and observed
number of asteroids begins to increase due to selection effects.
The dashed line histogram is the probable number of asteroids using
the "completeness" factors of Kuiper et al (1958). These
authors have tabulated the maximum and minimum probable
numbers of asteroids and the dashed line histogram in Fig. 4
is their mean. We have plotted the estimated probable numbers
‘up to the value where the correction factor, due to selection,
is of the order of 2. When the correction factor is much

greater than 2, considerable uncertainties may be present.

It can be seen from the figure that a straight line
(on this double logarithmic plot) is a good representation of
the data for asteroids with g greater than six. The solid
straight line is a least squares fit, by the writer, with the
result

-1.80+ .04
m —

f(m)dm dm (1)

where f(m)dm is the number of asteroids per unit volume of space

in the small but arbitrary mass range from m to m + dm kilograms.

The number density function per unit mass eq. 1 has
the general form

f(m) = constant x m~ ~ (2)
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There are a number of examples of power law type
distributions, such as eq. 2, observed in nature. The observed
distribution of meteoroids has generally the form eq. 2. Radio
meteors have a population index o = 2 (McKinley, 1951, Weilss
1961, Elford, Hawkins and Southworth 1964, Southworth 1967)
while Kaiser (1961) reported a = 2.17. Visual and photographic
meteors have been reported variously to have a population index
o = 2 to 2.34 (see McKinley 1961 for a review; cf. also Dohnanyi
1966 and 1967a). Hawkins (1960) reported that the distribution
of known meteorites has a population index of 2 for stones and
1.5 for irons.

We now tabulate, for future use, some of the properties
of population index type distributions. Given that the largest
mass present is M_ and p is the smallest and that (Mm/u) »», the
results listed in Table-1 are readily obtained. The table lists
me the total number NT and

total cross sectional area Irp of the system of spherical particles

as a function of the population index a. The normalization

expressions for the total mass M

constant A can then be expressed in terms of the physical

parameters M NT or onq and the resulting expressions are

T,
listed in the columns labeled as A(MT), A(NT) and A(oT) respectively.

The quantity & is defined as
v = (312 80)2/3, (3)

where p 1is the material density of the particles. It is readily
seen that the cross sectional area of a sphere where radius r

and mass m becomes
Irc = ¢ m ] ()

It can be seen from Table 1 that the total mass of

the system, M does not depend on the small mass cutoff u

T’
for o < 2. For such populations most of the mass of the system

is contained in the largest objects M_. When o = 2, MT is a
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logarithmic function of M_ and u. TFor o > 2, essentially
all the mass of the system 1s concentrated in the small particles
u. Since a power law function varies faster than does a

logarithmic function, we see that when o = 2, M, is relatively

T
insensitive to either u or M_ and is .completely independent
of M°° or pu if their ratio Mm/u is kept constant. The total
mass of the system is therefore seen to be distributed evenly

over all particle sizes for o = 2.

A glance at the column, in Table 1, headed by N
veals that for o < 1 most of the particles are large, for

T re-
a = 1 there are many particles of all sizes and for a« > 1 prac-

tically all the particles are small. o, behaves similarly

inasmuch the whole effective collisiona? cross sectional area
is concentrated into the largest objects for o < 5/3; for
a = 5/3 the effective collisional cross sectional area is
distributed over the entire size range and for o > 5/3 the
entire cross sectional area is concentrated into the smallest

objects of the population.

ITI. COLLISIONAL MODEL

A. Impact Mechanlcs

Interplanetary space contains a very large number of
objects having different masses and orbits and are believed to
frequently collide with each other inelastically. When such a
collision occurs at a sufficiently high relative velocity, frag-
mentation results. In the present study, the relative velocities
will be comparable to those of particles in space traveling in
different and sometimes intersecting orbits. The impact velocity
will therefore be of the order of kilometers per second, which is
sufficiently high to cause fragmentation.
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Regarding the mass distribution of fragments produced

during impact, the following type of crushing will be assumed:
g(m;M,M,)dm = C(M,M2)m'” dm (5)

Here, g(m;M,M2)dm is the number of particles having a mass be-
tween m and m + dm produced during the impact of a mass M with
another, larger mass M2. The coefficient C(M,Mg) is a function

of the colliding masses and n is a constant.

This particular crushing law eq. 5 is based on experi-
ment (Gault, Shoemaker and Moore, 1963) and observation of
impact into semi-infinite targets, corresponding to the case of
M2 »» in eg. 5. The value of n reported is

n v 1.8 (6)

Use of a particular crushing law is one of the major assumptions
.in this paper. However, since evidence supports a crushing law
of the general form of eq. 5 during hypervelocity impact, it
will be adopted here to estimate the distribution of particles

resulting from inelastic collisions at orbital velocities.

We shall now define C(M,MZ) in eq. 5 explicitly.
Using Table 1 we obtain for the normalization constant of a num-

ber density function with a population index n < 2:

C(M,M,) = (2—r0MeMg'2 (7)

where Me is the total ejected mass, i.e., the total mass of the
fragments produced during an impact between masses M and M2; Mb
is the mass of the largest fragment produced.
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When eq. 7 is substituted into eq. 5, the result is

g(m;M,M,)dn = (2-n)Mg'2Mem'” am . (8)

We shall presently distinguish between two types of
collisions. By erosive collisions we shall designate events
when the target mass M2 remains intact after the collision ex-
cept that it lost some small fraction of its mass. Catastro-
phic collisions constitute events when the target mass M
well as the projectile) is completely shattered.

5 (as

For erosive collisions we take

M TM << M

e 2
(9)

=
]

AM << M

where T and A are both functions of the impact velocity and
material properties of the target as well as the projectile but
not their masses. M2 i1s the mass impacted by M and the double
inequality sign reflects the fact that the coefficients T and A
refer to a semi-infinite target. It can be seen from eq.9

that I is the total ejected mass per unit projectile mass and

A is the mass of the largest fragment per unit projectile mass.

The use of eq. 9 is based on results from hyper-
velocity experiments discussed by Gault et al (1963). These
authors find that the total ejected mass as well as the mass of
the largest fragment during hypervelocity cratering into basalt
is proportional to the projectile kinetic energy, and hence, to
the projectile mass. These experiments were conducted at im-~
pact velocities over a range not exceeding 10 Km/sec and over a
range of projectile kinetic energies from 10 Joules to lOu
joules approximately .
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Ir

'™

o
=

(10)

then eq. 8 breaks down because a hypervelocity impact into a
relatively small target differs from the former (semi-infinite
target) situation since the shock formed durling impact will

be reflected back toward the impact area rather than propagated
away to infinity (i.e., dissipated). This is particularly
significant for stones fracturing easily under tension. For
these objects, a mass

(11)
M. >> M

2
can still be completely shattered by the shock wave (generated
during the event) which is reflected at the free surfaces and

propagated inward as a tension wave.

In the absence of sufficlent factual information
describing this catastrophic process, the following will be

assumed:

(i) the largest mass M, completely shattered by M is

given by
= Tf 12
M, = I''M (12)
. - 1
with M = M+ M, and T' > T.

(1i) when

M2 > T'M

the semi-infinite target relations are valid and the

collision is erosive.
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Substituting these constants into eq. 7, one obtains
an explicit expression for C(M,Mg) in terms of M for erosive
collisions

‘ (13)
COMM,) ~ C(M,=) = (2-m)TA"™2 w™ L, piw < M,

For catastrophlic impacts between two particles where
I'M is greater than Mz, we take the total available mass M + M
to be equal Me

2

M_ =M+ M (14)
and obtain for catastrophic collisions
—_ n=2 n=-2 1
C(M,Mz) = (2=-n)A (M + MZ)M > I''M > M2 (15)

This relation, together with eq. 5 and 13 defines the model
crushing law employed in this study.

Approximate numerical values for T and A, based on
hyperveoccity impact experiments into basalt by Gault et al

(1963) are given in Table II at several impact velocities

TABLE II
V(Km/sec) r A
5 1.3 x 10° 1.3 x 10
10 5 x 10° 5 x 10
15 1.1 x 107 1.1 x 10°
20 2 x 103 2 x 10°
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_ The value of I'' is more difficult to estimate. Gault
(private communicafion) observed that a basalt particle is com-
pletely shattered by a projectile 10"3 times its mass, moving
at 2 km/sec. Since I' is about 20 at this velocity,

r'' =507 (16)

for this case. It will be assumed, in what follows, that this

relation 1s valid for higher projectile velocities as well.

B. Collision Equation

In this section the mathematical formulation of the
evolution of a system of inelastically colliding particles is
developed., All objecté will be assumed spherical and of 1lden-
tical material properties. Given that f(m,t)dm is the number
of particles per unit volume having a mass between m and m + dm
at a time t, this function will change as a result of collisions
between the particles because many new ones are constantly
created (by fragmentation) and others destroyed. The system it-
self possesses a "sink™ 1in the sense that sufficiently small

particles are removed by radiation effects.

In what follows, the system will be assumed suffi-
cently random that an effective average collisional velocity

(independent of particle mass) is meaningful; the collision cross
section is taken as the cross sectional area of the colliding
spherical particles. This assumption is equivalent to the process
of finding the motion of the center of mass of the system of
particles, then switching to the center of mass coordinate system;
the particle velocities will then be random, to a first approxi-
mation. Here we have invoked the analogy of a system of gas
molecules in a moving box.

An equation defining the collective evolution of our
system of particles can now be defined. The time rate of
change of the number of particles in a mass range of m to
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m + dm is given, in a schematic form, by the following expres-

sion (individual terms are explained below):

I

of (m,t) rate o? change of the number of particles
”_Zﬁf”“' dm= Jper unit volume and unit time in mass rangg
tom + dm due to erosion of these parti-
cles by collisions with smaller ones.

11

rate of loss, because of "catastrophic"
collisions, in the number of particles per
unit volume and unit time in the mass
range m to m + dm

11T (17)

number of particles in the mass range m to

+ dm, created per unit time and unit
volume by erosive and catastrophic colli-
sional crushing of larger objects

Term I is the rate of change of the number of parti-
cles per unit volume and unit time in the mass range m to
m + dm due to the fact that the masses are themselves changing
in time. This is caused by collisional processes which erode
particles into and out of the mass range m to m + dm with the
passage of time. This expression is given by (Dohnanyi, 1967b)

term (I) = - -g;n- [f(m,t) g%] d'm (18)

where the prime on d'm is used to distinguish it from (dm/dt)dt.

Eq. 18 can be understood by noting that the bracketed
expression f(m,t)(dm/dt) is a flux term in the sense that it
equals the number of particles (per unit volume) per unit time
whose masses change, because of erosion, past the fixed mass

value m. If we consider a two dimensional "phase space" in the
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two variables, mass m and time t., where all the particles in

the sample are plotted as points moving along "trajectories"”

m, = m%t) with i = 1,2,---NT then the number of particles (per
unit volume) moving past a fixed mass value m per unit time is
f(m,t)(dm/dt). The net rate of change in the number of parti-
cles in the fix€d mass range m to m + d'm is then readily seen

to be the "divergence' with respect to m of the flux f(m,t)(dm/dt)
multiplied by the increment d'm. The negative sign in eq. 18

is necessary because if both f(m,t) and dm/dt increase (or

both decrease) with increasing mass, more particles are lost

from the mass range than are gained as can easily be verified.¥

We now estimate dm/dt which is the rate of mass loss
of a particle with mass m undergoing erosive collisions with
other masses that are not large enough to completely disrupt
the particle with mass m.

The amount of mass removed in a single collision with

_a mass M 1s, according to eq. 9,
M (19)

The number of collisions that a mass m will experi-
ence (per unit time) with particles in a mass range M to M + dM
is equal to the triple product of the geometrical cross sec-
tional area of the (spherical) particles and the number density
(per unit volume) of particles in the mass range M to M + dM
and the mean collisional velocity:

2
K r(M,t) | M3 + nl/3 an (20)

where K= 7V (21)

# If, e.g., f(m,t) decreases with mass, there will be more
particles at a mass m than at m + d'm. If, further, the parti-
cle masses are decreasing faster at m than at m + d'm a net
loss results.
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Here V is the average collisional velocity and % is defined
by eq. 3.

The total mass removed from m per unit time due to
all erosive collisions is then the product of eg. 19 by eq. 20
integrated over appropriate limits,.

m/T!

2
= 1k M Of(M,t) (Ml/3 + m1/3) am - (22)
H
where u 1s the mass of the smallest objects present and m/T' is

the smallest mass that completely disrupts m during a collision
(cf. eq. 12).

Since T' 1s of the order of lO3 or larger, the colli-

silonal cross sectional area can be taken to be
1/3 , 1/ %~ . 2/3
K (M + m ~ Km (23)

Combining egs. 18, 22 and 23 then yields

1
5 m/T

term (I) = - [k n?/3 r(m,t) M £ (M,t)am| dm (21)

H

which 1s the number of particles gained, in the mass range m to
m + dm, per unit volume of space and unit time because of

erosive collisions.

We now substitute into eq. 24 a population index type
number density function of the form

f(m,t) = A(t)m (25)
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and the following expression is obtained.

2
term (1) = - AJBLKL e = 13 H(o0_8/3) (m/r7) 2 2 (am2/3) 0" |am

(26)

where a= 2.

Eq. 26 can be understood if we consider its value
when

m >>T'q (27)

where I''y 1s the mass of the largest object completely disrup-
ted when colliding with uw. When o> 2, the first term in the
‘bracketed expression on the right hand side of eq. 26 can be
disregarded (in comparison with the second term in brackets).
When a= 2, the result is a logarithmic expression. When a< 2,
the second term in brackets on the right hand side of eg'n 26

can be disregarded, with the result

term (I) = - 2(a=h/3)(2-0)"F KAZ(t)T (r1)® 2 p~2%%5/3 4y (28)

It can be seen, from eq. 28, that when a>4/3 the right
hand side of the equation is negative and erosion decreases
the number of particles in any given mass range. When a< U4/3,
the right hand side of eq. 28 1is positive and have more larger
particles and eroded into the mass range m to m + dm (per unit
time) than are eroded out (of the mass range) into smaller mass
values. For a= U4/3, term (I) vanishes, in first order, and hence
the population is stationary with respect to erosion, 1.e., as
many particles are eroded into as are eroded out of the mass range

m to m + dm per unit volume and unit time.
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This completes our deviation of term (I) in the colli-

slon equation.

Term II in the collision equation (eq.17) which is
the time rate of change because of catastrophic collisions 1in
the number of particles (per unit time and unit volume) having
a mass in the range m to m + dm can be readily derived. We
note that the number of collisions a particle (having a mass m)
experiences with other particles is eq. 20 integrated over
appropriate limits. The total number of such events experienced
by masses in the range m to m + dm per unit volume ( and unit
time) is then the product of the latter expression by f(m,t)dm.
Therefore

M

o

\2
term IT = ~ K f(m,t)dn £(M,t) ((n1/3 + M1/3) an (30)

“m/T!

where the minus sign is used to denote a particle removal pro-
cess and where M_ is the mass of the largest object present.
The range of values for M, m/T' < M < M_s is seen to include
all mass values that would completely disrupt m during an in-
elastic collision (cf. eq. 12).

Substitution of a population index type solutlon

eq. 25 into eq. 30 yields, for masses m << M_:

-

term IT = + [%Jlm_a+2/3 mn] [%V (m/r')—a+l/(—a+l)]
1 2

- EVm"“dm] [M;“+5/3/(-a+5/3):‘) ) a$5/3  (31)
3

where only the leading terms have been retained.and terms describing
grazing collisions disregarded. For o = 5/3, a logarithmic
expression results.

The expression labeled (1) in eq. 31 is the total
cross sectional afea of all particles in the mass range m to

m + dm (per unit volume of space). Expression (2) is the
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cumulative flux per unit area and unit time of point particles¥
having a mass m/T' or greater, provided that >1. (3) is the
flux of pbint particles (per unit area and unit time having a
mass in the range m tom + dm. (4) is the cumulative cross
sectional area (per unit volume of space) of all particles
having a mass M_ or smaller, provided that a<5/3.

It can therefore be seen that the rate of change in
the number of particles (per unit volume and unit time) in the
mass range m to m + dm due to catastrophic collisions given by
eq. 31 is the sum of two separate contributions. On the one
hand, one has expression (1) x (2) which is the rate of
catastrophic collisions of our "target" masses m due to the
influx of point particles with masses m/T' or greater. On
the other hand, we also have expression (3) x (4) which is
the rate of Iinflux of our masses m into randomly spaced target
objects. It can readily be seen that when o>5/3, the contribu-
tion of (3) x (4) 1s negligible. This happens because,when
a> 5/3, small particles are so abundant that catastrophic
break ups of objects having a mass m are mainly caused by
collisions with smaller objects having a mass in the neighbor-
hood of m/TI'. When a< 5/3, the converse is true; (1) x (2)
becomes negligible and the frequency of catastrophic encounters
that objects with a given mass experiences is determined by
their collision probability with the largest objects in the
population., When a= 5/3, both of these contributions are
significant. A

¥By the expression “point particle® a particle is meant
that has no sige i.e., all of whose mass is concentrated into
a mathematical point. .
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Term (III) of the collision equation (eq. 17) 1s the
number of particles, in the mass range m to m + dm, created per
unit time and unit volume by the erosive and catastrophic frag-
mentation of inelastically colliding larger objects. It can be
expressed (Dohnanyi, 1967b) in the form -

M. M
term. III = K m~  dm aM M, C(M,M,) £(M,8)f(M,,t)
m/ A
1/3 1/3)°
x \M + M, (32)

This expression can be understood in the following
manner: '

C(MgMz)m_rhm (33)

is the number of particles created into the mass range m to

m + dm by one single erosive or catastrophic collision between
an object with mass M and a larger object of mass M2 (ef.

eq. 5 and 12). The quantity

2

K £(M,t)dM f(M2,t)dM(Ml/3 + M l/3) (34)

2

is the total number of collisions per unit time and unit
volume of objects having masses in the range M to M + dM with
objects having masses in the range M2 to M, + dM2. The

2
quantity

2

K m~ .dm C(M,M,) £ (M, £)AM £(M,,t)dM, (M1/3 +m 173 )2
(35) -
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is then the rate (per unit time and unit volume) of production
of masses in the range m to m + dm by the collision of objects
in the mass fange M to M + dM with objects in the mass range
M, to M, + dM, provided that the abundance of the latter is
given by f(M,t)qM and f(ME,t)dMZ, respectively.

Integrating eq. 35 over appropriate limits in order
to estimate the contribution (to thé'particle creation in mass

range m to m + dm) of all permissible collisions between masses
M and M2’ we obtain eq. 32.

Using eqgs. 13 and 15, (C(M,M2) can be expressed ex-
plicitely in eq. 32; the result 1is

term (III) = K(2~n)m " A2 dm

M, /T r'M
X {;}f dM/f/. AM,, (M+11,,) (Ml/3 + M21/3)2 M”"2f(M,t)f(M2,t)
m/A M

M“D/I" M

N 2
+ F{‘ dM'J/ am, <M1/3 + M21/3) MM (M, 6) £ (M)
‘m/A r'm
M M
i/’ 0 / oo 2 _
+ 0 am | aMy(usmy) (Ml/3 + M21/3) M" 2f(M,t)f(M2,t;B
i ;
/M_/T' /M s

(36)
Here the first and third integrals refer to catastrophic colli-

sions between masses M and M, such that both are ftotally disrup-
ted

rM M, (37)



BELLCOMM. INC. - 21 -

where T''M is the largest mass completely disrupted during a
collision with M. The second integral refers to erosive colli-

sions between masses M and M2 such that M2 behaves as an infi-
nite target

I'm i;M (38)

and the mass redistributed is Jjust TM.

The third integral refers to catastrophic collisions
between objects in the mass range M_/T' to M_. For test
masses m

m/A > M_/T' (39)

where m is the largest fragment created during impact by a
"projectile" object of mass m/A, the first two integrals are
zero and only the third integral is retained with lower limit
of m/A replacing M_/T'.

We now substitute a population index type number den-
sity function, eq. 25 into, eq. 36. The result is

term III = m "dm ((é(m/A, T'm/A) :>’ (40)

where

8/3—a 2  2a-11/3
<3(m/A r m/A)> 2/§£F; Kga_ﬁ_5/3 m-2ot 5/3+n (41)
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where only the leading term has been retained; eq. 40 is wvalid
under the following restrictions

(1) m << AM_/T!
(11)  e> 5/3 (42)

(111)  a> § (n+5/3)

where AMw/P' i1s the largest fragment when M_ is completely dis-
rupted by an object having a mass M_/T"'.

We now discuss the physical meaning of eqs. 40 and 41.
Eg. 40 is the leéding term arising from the contribution of
catastrophic collisions to eg. 36. The contribution of erosive
collisions is of the order of T/T' = 50'1 times (smaller than)
eq. 40 for populations satisfying eq. 42-ii.

The comminution law, for a single catastrophic
event is (egs. 5 and 15)

g(m,M,Mz) = [£2—n)An_2 MgMn{a- m” "dm, for M<< M, (L43)

The expectation value of eqg. 43 for all permissible
collisions (per unit time and unit volume) between projectiles
having masses m/A or greater and target masses of T''m/A or
greater*® is eq. 40; the quantity <<§(m/A, P'm/£z> is the
expectation value of the bracketed quantity in eq. 43,

¥ Phis condition insures that at least some of the fragments
will have a mass in the range m to m + dm.
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Writing out term III (eq. 40) explicitly, we obtain
for the number of particles created per unit volume and unit
time

term IIT =

(2-n)(r1)8/372 ga? 2207113 _ou45s3
8/3 ~ o 2a-n- 5/3

(4h)
where the comminution law population index cancels from the
mass exponent. This happens because the most important contri-
bution to the creation of objects in the mass range m to m + dm
arises from collisions where the mass m represents the mass

of the largest fragments produced.and, for a given number of
collisions, the number of largest fragments produced is proport-
lonal to the number of collisions and not to the way smaller
fragments are distributed. Mass, of course, must be conserved
and the presence of the index n in the coefficient on the right

hand side of eq. 48 partially insures this requirement.

In order that the dominating contribution to the pro-
duction of masses in the range m to m + dm should consist in
the largest fragments, it is necessary that the population index
o be greater than a certain value (condition (iii), eq. 41),
otherwise large masses are so abundant that masses smaller than
Mb will significantly contribute to the production rate eq. 40,
and the exponent n will no longer cancel. Specifically this
happens when

o < % ( +5/3) (45)

i.e., when condition (iii), eq. 42 is violated.
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Ir
o < 5/3

i.e., if condition (ii), eq. 42 is violated, then large masses
are sufficiently abundant that the catastrophic and erosive
crushing of the largest objects (with masses in neighborhood
of Mw) will dominate the particle production rate eq. 36.

The influence of the large mass cutoff on the distri-
bution at M_ also modifies the particle production rate (as one
would expect). This complication is, however, absent for objects

with relatively small masses satisfying condition (i), eq. 42.

It is. interesting to note that when o = 11/6, the
dependence on n of the expression in eq. 44 cancels. The
production rate of masses in the range m to m + dm 1s in this

case simply proportional to m_2 dm .

IV. SOLUTION OF THE MODEL FOR ASTEROIDS

In this section, the collision equation (eq. 17) is
solved for a special case and the significance of the soclution
discussed.

qubstitution of the explicit expressions eq. 26,31
and 44 for the various terms in eq. 17 yields (after cancel-

lations)
no® GALE) 20583 425y k p(r)*Tnm23
2 o~1
AS(£)K (r") m2e+5/3 (46)
o -1
2- n 2 -a+8/3, 20~11/3_ -20+5/3
t o {Zemno5/30(873-ay A (DR A m
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where m_a(dA(t)/dt)dm is the rate at which the number of objects
(per unit volume) in the mass range m to m + dm is changing in
time. Eq. 46 is valid under the following restrictions (cf.

eq. 42).

1

5/3 < a < 2
2 (n+5/3)< @ (47)

T'u << m << AMm/r'

where TI''u is the largest objJject that can be completely disrupted
when a particle of mass p collides with it and AMw/P' is the
mass of the largest fragment when the largest obJect in the
sample M_, is catastrophically broken up by an object having a
mass M_/T'.

It can be seen, that for o not in the neighborhood
“of a = 2 but less than 2, the erosion term (first term on the
right hand side of eq. 46) 1s smaller than the catastrophic
collision particle removal term (second term) by a factor of
the order of I/r'' = 1/50 and is negligible in a first approxi-
mation. It is therefore evident that erosion plays only a minor
role in "shaping" the distribution of our particles (c¢f.. discussion

accompanying eq. 40).

The time dependent equation (eqg. 46) can only be
solved for constant o if

-a = =20+5/3 , i.e., a = 5/3 (48)
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Thils result, however, violates the first condition in eq. 47
and therefore gives rise to a contradiction. More specifically,

for o < 5/3, the particle creation term (term III) becomes,
approximately,

2

' - -1
term III = 1573 Y (n¥5/3-24)

ACK(pr) ML ynm2y n-2045/3, -
(49)
where use has been made of the relation
n oA 1.8 > 5/3

It can be shown that for n< 5/3, similar (but not identical)
conclusions apply.

From eq.30 it can easily be shown that when o= 5/3,
term III, eq. 49 is of the order of M_""2/3(p1/)% " m~1*5/3
times greater than is term II. It therefore follows, from eq.
46, that when o= 5/3 the fragmentation of large objects will
definitely alter the distribution of particles since large
quantities of objects with a population index n are added to the
population of smaller particles. Whence the largest objects in
the distribution give rise to an evolution of the whole system
of particles. Equation 46 is obviously not satisfied for
a = 5/3 and m << AM_/T"'.

The only way eq. 46 can be satisfied with constant o
is then the steady state solution

dA _
g =0 - (50)
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We therefore have

(Pv)u—l 2 (rt)~° +8/3A2a—11/3

a=1 ~ (20~ m =5/3)(8/3-a)

(51)

where the erosion term has been disregarded and the guantity

K A2m_2°‘+5/3 factored out.

Eq. 51 is solved for
o = 11/6 (52)

which is the first approximation to the steady state solution.

Eq. 52 indicates that as long as I''>> T, such that
the erosion term (term I) can be disregarded, the steady
state solution o = 11/6 is insensitive to the physical
parameters T, T'', n (provided that n<2), and A . Thus, had
we assumed that the physical parameters T, T' and A depend
on some power of the velocity other than two (i.e., kinetic
energy scaling) the same results would follow regarding the first
order approximation of the steady state value of a. It is
therefore evident that the result o= 11/6 for a steady state
population is rather insensitive to the precise details of the
impact mechanics used.

Some of the properties of a population withao= 11/6
can be discussed if one computes the total mass crushed
catastrophically M12, by "projectile" objects in a mass range
m, to m, impacting much larger target masses:
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ms r''M
y - -0 2/3 -0
M12 A M dM-/r M2K M2 A M2 dM2
M

1

my

K AZ(P')"“+8/3 -20+11/3 —2a+ll/3\§
(ma+8/3)(~2a¥11/3) \M2 -y ,/

when o« # 11/6 (53)

2, . ,\=a+8/3
KuA (£8}3 an(m,/m, ) when o = 11/6

It can be seen, from eq. 53, that when a > 11/6, the
dominating term is m£2u+ll/3 for sufficiently great range of
projectile masses (i.e., for M, >>ml) and hence, practically
all the crushed mass is produced by small projectiles. When
o < 11/6, the converse is true and practically all crushed mass
is produced by large projectiles. When o =)ll/6, then the
rate of mass production by crushing is independent from the mass
of the projectile and is only a function of the ratio of the
mass m, of the largest and mi'of the smallest projectiles in
the range considered. Therefore, when o« ¥ 11/6, the rate of
mass production is sensitive to the "end points" u or M_ in
the distribution (depending on whether o is greater or less
than 11/6, respectively) while for o = 11/6 the mass production
is constant for fixed logarithmic intervals of projectile masses
M2/M1 and 1s therefore only a weak function of the "end points"
(a change by a factor of e10 in the mass of either end point
would only change the total mass production rate by a factor

of 10).
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The result o = 11/6 is based on the simplified rela-
tion, eq. 51. A more correct treatment has to consider the
small (but finite) influence of erosion (term I) as well as the
numerous higher order terms when the collision equation (eq. 17)
is evaluated for a population index type number density func-
tional (eq. 25) under the restricting conditions eq. 50. This
program has been carried out by the writer and numerical values
of the various collisional processes as a function of the popu-
Jation index o are given in Fig. 2 and Fig. 3. These figures

are plots, in units of (K A2 m‘2a+5/3)—1

, 0f the number of
particles per unit mass unit volume and unit time removed
(or created) by the individual collisional processes and their
sum for two different average collisional velocities, as indi-
cated. The population index of the crushed fragments durlng
each collision, n, is taken to be the experimental value 1.8.
The value of o at which the curve representing the sum of all

. processes crosses the horizontal axis (i.e., the value of at
which the individual process adds up to zero) is the solution

for aof eq. 17.

It can be seen, from Figs. 2 and 3, that the particle
creation term is significant only for values of o lower than
about 1.92 while erosion dominates for higher values of a. The
individual processes and their sums exhibit remarkably similar
trends; the values of aat which steady state is reached is
o = 1.841 in Fig. 2 and 1.835 in Fig. 3. It can also be seen
from Fig. 2 and Fig. 3 that if erosion were completely absent,
the value of o at which steady state is reached would be
shifted toward the slightly higher value of about 1.842 to
1.845. 1If, however, the catastrophic collision process were
absent, the steady state distribution would have a somewhat
"steeper" population ihdex of about 1.92 to 1.93. It can there-
fore be seen that the steady state distribution is determined by
the balance of the creation and catastrophic collision processes
and erosion has only a minor effect on the steady state distri-
bution.
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In view of the fact that the material parameter T is
by a factor of U400 greater in Fig. 3 than in Fig. 2, we conclude
that the value of a at which steady state is reached as well as
the relative trends of the individual collisional processes are
insensitive to the material parameters, as we have deduced earlier.
The same holds for n,fsince a modest variation in n is found to
produce no significant departures. This is indicated in Table
ITITI. This table is a list of the values of o for which steady
state conditions have been reached, i.e., for which eq. 27 is
satisfied, for various values of the parameters T and n ; the
average collisional velocity for each case is also indicated.
The interpolation error in the numerical value of o 1s about
+ .0005.

TABLE ITT
n=1.7 n=1.8 n=1.9
T o ) a V(km/sec)

5 1.843 1.841 1.839

20 1.841 1.839 1.838

125 1.838 1.837 1.836
500 1.836 1.836 1.835 10
1125 1.835 1.835 1.835 15
2000 1.835 1.835 1.834 20

It can be seen, from the table, that the value of a,
at which a steady state is reached 1s in the range of
1.834 < a <1.841, depending on the material parameters which
range over several orders of magnitude. Higher collisional
velocities tend toward a slightly lower equilibrium value of a
than do lower velocities and a small but significant change in
n produces an insignificant change in the equilibrium value of

o
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We now examine the stability of the solution eq. 52.
for small masses when steady state conditions are not fully satis-

fTied and we allow a to be slightly different from the steady state
value and therefore a function of time.

The normalization constant A will now be rewritten in
terms of the total mass of the system, MT’ and the mass of the
largest object, M, (cf. Table 1). One obtains

ro r o
%f [A m ﬂ = %—t— IL(2—a)MT MZ 2 a] (54)

And hence
My, M n7® [}2—&) sn (M_/m) - 1] o dm

={ - 'term II l + I term III l dm (55)

where MT and M_ are assumed constant as a first approximation.
Since a < 2, the expression in the bracket is positive for
masses m somewhat smaller than M_ . Whence, when creation (term
ITII) exceeds removal (term II) of particles in a mass range m
tom + dm then o increases in .time. This merely reflects the
fact that since each process of catastrophic collision adds a
whole spectrum of particles having masses equal to or smaller
than the size of the largest fragment, smaller particles are
"piled up" faster than are larger ones and hence o 1lncreases
with time'if this process is not balanced by a particle re-
moval mechanism. If the removal term (term II) exceeds the
creation rate (term III), then o decreases with time. This
follows since small particles, being more numerous than larger
ones, undergo correspondingly more catastrophic collisions

and therefore they will deplete faster (if not replenished)
than do the larger objects, hence « décreased with time In this
case. Similar conclusions follow if term I (erosion) is in-
cluded in eq. 55.
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It can furthermore be seen, from Figs. 2 and 3, that,
for a value of o which is smaller than necessary to produce
steady state, the particle creation process (term IIT)
dominates. Eg. 55 indicates that in this case a will increase
with time toward the steady state value. If o is greater than
the steady state value, the particle removal processes will
dominate and hence, by eqg. 55, a will decrease in time toward
its steady state value. The steady state distribution is
therefore shown to be stable by this simplified analysis.

V. APPLICATION AND DISCUSSION

A. Model Distribution

In this section, a model distribution of debris
in the asteroidal belt is defined and compared with observation.
This is accomplished by a sultable choice of the physical
parameters and the number density function is then normalized
to the observed number of asteroids.

In order to estimate the mean collisional velocity
for asteroidal particles, we note that the overwhelming
majority of asteroidal orbits have a very low eccentricity
with an average value of about .15 (see, for example, Watson,
1956). This means that the asteroidal velocities are

reasonably well approximated by their transverse component

vV ~ 30/VR (56)

where V is in Km/sec and R is the distance from the sun in
AU.

Under this approximation, the relative asteroidal

velocities Vrel

inclination i. Written explicitly,

become functions of only R and the orbital
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R

_ 2 2
Vv = W/%i + V2 - 2V.V cos(il - 12)

rel 1°2
(57)

}

5)

2 .
30 i W/l - cos(i1 - i

where the algebraic sign of i depends on whether the object
is ascending or descending in its orbit.

In order to estimate the expectation value of

1 - cos(i1 - 12), we make use of results published by
Watson (1956). This author has discussed the distribution of
the inclination of about 1500 asteroids and plotted the results;
graphically. Assuming that the nodes are randomly distributed
a symmetric function in i can then easilyAbe constructed for
the relative number of asteroids ascending in an orbit of
inclination i (or descending in an orbit with "inclination"
-1). This program has been carried out by the writer with
the result that the root mean squared average velocity¥® is
given by |

<V > ~ 5 Km/sec (58)

with a root mean square derivation of about the same magni—
tude. A value of R ~ 3AU has been employed. Since the
asteroidal belt extends from about 2 AU to about 3.5 AU, we
expect that the region at R = 3AU is suffilciently close to
the center of the asteroidal belt to be representative.

¥ <V >
rel
1/1 - cos(i1 - 12)'with respect to a symmetric distribution

=0 sinqe the expectation wvalue of

In zero; this merely reflects the fact that vrel points
North as often as it points South.
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Assuming that the distribution in inclinations of
the observed asteroids is representative of the smaller ones,
we take 5 Km/sec as the mean collisional velocity*® for our
model. The population index of the steady state distribution
for this velocity is then given in Table III, for n = 1.8,

o = 1.837 (59)

We now consider again the distribution of the
known asteroids as given by Kuiper et al, 1958 (cf Fig. 1).
Fig. U4 is a plot of the number of asteroids as a function of
absolute photographic magnitude g published by these authors
and therefore is identical to Fig. 1 in thls respect.

The solid straight line is an empirical least squares
fit by the writer as in Fig. 1 and the resulting number density
as a function of mass has a population index.

a = 1.80 + .04 (60)
The dashed straight line 1s a least squares fit to

the data with a population index 1.837, (eq. 59). It can be
seen, from the figure, that this relation fits the data
reasonably well. The value o = 1.837 is, in fact, within the
standard deviation of the empirical fit, eq. 60. The number
of asteroids N(m)dm in the mass range m to m + dm in the
asteroidal belt 1s then given by

N(m)dm = 2.59 x 1010 m1-837 ap x ¥ | (61)

In order to estimate the number density of asteroids
in the mass range m to +dm we need to estimate the volume to
which they are confined.

#Tt can be shown that the spread in the orbital eccentricities of
asteroids contributes a smaller relative velocity which, is neg-
ligible in view of the uncertainties already present in Vrel'
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Narin (1956) has treated the distribution of the
latitudes of the positions of 1563 asteroids and obtained
an empirical fit giving the number of asteroids as a function
of latitude in 2° intervals averaged for the years 1954 through
1974. Using Narin's result it is easy to show that about 81%
of the 1963 asteroids are confined to a latitude of 10° or
smaller. We therefore assume that asteroidal bodies are
effectively distributed into a volume of revolution generated
by a line inclined by 10° to the ecliptic and bounded by spheres
with radii¥ of 3.5 AU from the outside and 2 AU from the inside
The resulting volume is then 8.47 x 103& meters.

Assuming no correlation between asteroidal masses and
inclinations, we normalize 81% of the asteorids to the
volume of 8.476 x 103U meter3. The result

£(m)dm - 2.48 x 1522 w1837 am/meter3 (62)

where f(m)dm is the number density of asteroids in the asteroidal

3

belt per meter” in the mass range of m to m + dm Kg.

For the parameter M_ we choose the mass corresponding
to g = U4,
M_ = 1.88 x 10°%kg.
This choice is, however, an extremely conservative
lower limit. The number density of observed asteroids in the
neighborhood of g -~ 4 is (in a statistical sense) an order of

magnitude higher than is the theoretical value given by eqg. 61.
If one divideds the three largest asteroids into a fractional

¥This choice for the radial extent of the asteroidal belt
coincides (approximately) with the region into which the
asteroids of Kuiper et al's survey are distributed.
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number of objects in the range of magnitudes 6>g>g°o where
g, corresponds to a fictitious but statistically meaningful
object, the corresponding value of M_ is considerably larger
than 1.88 x 10°° Kg. We do not carry out this program but

will refer to it again before closing this section.

B. Statistical Properties of Asteroidal Fragments

In this section, a number of statistical properties
of the distribution of asteroids and their fragments will be
derived using the present collisional model and their significance
discussed.

Using eq. 62, one can calculate the rate at which
particles are undergoing collisional processes described by
the model. The result is Fig. 5 where these rates are plotted
logarithmically as a function of mass in Kg. Rates are expressed
per year and are multiplied by the effective volume of the
asteroidal belt so that the result is the total number of
objects undergoling the various processes in the asteroidal
belt (rather than per unit volume) within a latitude of
+ 10°. The population index 1s taken equal to 1.837, the
mean collisional velocity is 5 Km/sec and n is 1.80.

¢ (m)dm is the total number of objects created
per year 1in the mass range m to m + dm Kg, and is given
by eq. 36 evaluated with the use of eq. 62 and multi-
plied by the volume of the belt (and expressed in appro-
priate units). We plot ¢{(m) = ¢ (m)dm/dm rather than
¥Wm)dm so that the yearly rate corresponding to a certain
value of m has to be multiplied by a desired mass range dm
in order to obtain the number of objects yearly created in
that mass range. We find, for example, that for m = 108 Kg,

¢H110~6/(yr Kg). This means that if we take a mass range of
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8
107 to 108 + 107 Kg, the yearly creation rate, in this range,

becomes 107 Kg ¢y~ 10/year and hence, 10 objects in this mass
range are created every year (on the average) by collisional
break up of larger objects. The departure from linearity of
p(m) at m ~ lOlS'Kg is caused by the fact that one is

approaching M_, the top mass of the distribution.

The quantity ¢(m)dm is the number of objects in
the mass range m to m + dm destroyed by catastrophic collisions
per year and is given eqg. 30, multiplied by the total volume
and expressed in appropriate units. The numerical values of
v(m) and ¢ (m) are almost equal and are plotted in Fig. 5 as
a single curve for masses less than 1015 Kg, this reflects
the relative unimportance of the erosion process in the steady
state distribution described by the present model.

The expression M(m) is the total mass in Kg of
objects having a mass of m Kg or smaller creater yearly due
to collisional fragmentation; 1t is given by

m

ﬁ(m) = p(m')m' dm' (63)

where ¢(m)dm is given by eq. 36. It can be seen, from Fig. 5
that the total asteroldal mass, crushed yearly, is about 1012 Kg

(with an uncertainty of about x16i1).

For m sufficiently small, eq. 63 gives an estimate
of the mass removed yearly from the asteroidal belt by radia-
tion forces. Since in this model we have arbitrarily chosen
1 as the smallest object created, M (u) = 0. It is, however,
to be expected that objects with a mass I''n or less will be
strongly influenced by radiation forces since they are no
longer large enough to experience collisional processes by
much smaller particles, the latter being absent because they
are blown away by radiation pressure. We therefore assume,
somewhat arbitrarily, that an upper 1limit of the yearly
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mass loss from the asteroidal belt due to radiation damping
(Robertson, 1936) and radiation pressure is given by

M(T'u)in Kg/yr. According to Fig. 5, this quantity is about
7 x lOlOKg/yr. In view, however, of the fact that the
distribution of such small particles is likely to be strongly
influenced by collisions with cometary meteoroids a reliable
figure for the yearly mass loss can only be given after the
problem under discussion has been treated. Whipple (1967)
estimated the yearly mass input required to maintain the
zodiacal cloud. He found that the total mass input of
particles having a mass of .1 Kg or less is 10 or 20 tons per

second (or 3 to 6 x 1011

Kg/yr). The total asteroidal mass
of particles having a mass of 10"1 Kg or smaller, is, from
Fig. 5, about 3 x lOllKg/yr (with an uncertainty of x 16i1).
Asteroidal particles may therefore contribute, significantly,
to the zodiacal cloud. In order for the asteroidal particles
to be dispersed into small perihelion orbits ( <1AU, for
example), they must be so small that radiation damping is
significant or else the collision responsible for the creation
of the particles must involve a very large momentum transfer.
It is therefore necessary to treat the dynamical interaction
of the population of asteroidal particles with that of the
cometary particles before one can precisely estimate the
influence of asteroidal debris on the zodiacal cloud.

We note that when M(T'u) is averaged over a period
of 109 years, the result is 7 x 1019 Kg which is the same order
of magnitude (but smaller) as the mass of one of the largest
objects present. This mass removal rate therefore requires
the presence of one parent object in addition to others already
avallable in very early times and therefore does not involve

arbiltrary assumptions.
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We now consider the total mass MT of the asteroids
and their debris within a latitude of 10°. Using Table-1,
we obtain
My = A(2-a)"t w274
Choosing M_ = 1.88 x 1020 corresponding to an absolute
magnitude g = 4, we obtain for the total mass density of 3.1 x
10—15 Kg/meter3 (i.e., 3.1 milligrams/kilometerB) or a
total mass of 2.6 x 1020 Kg. This latter value is of the same
order of magnitude as the mass of one of the three largest
asteroids. Practically all the mass in the asteroidal belt is

therefore concentrated in the largest asteroids.

FPig. 6 is a double logarithmic plot of the
rate R at which the radius of a spherical object changes with
time due to erosion as a function of the mass in Kg of the
object; the radius of an object having a mass m and a density
of 3.5 x 103 Kg/m3 is also indicated. The mathematical
expression for é is readily derived from eqgs. 22, 25 and 62; the

result is

. _ KRAT 1y2—a_ 2—q
R = (2—&)(3gﬂp)1/3 (m/T") H ; (64)

in an arbitrary system of units.

The most obvious feature of eq. 64 (cf. Fig. 5) is
that é is not a constant but a function of the mass of
the object undergoing erosion. We remind the reader that the
process of erosion as defined in this paper is not due alone
to collisions with small micron sized particles but also to
collisions with all masses up to m/I'' where m 1s the mass of
the objects being eroded. Since in our model the population

index o is less than 2, the particle number density is such that
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the total mass eroded away from a given object by collisions
with microparticles is much less than is the mass eroded away
by larger objects. We therefore have a situation where
objects that are large in comparison with microparticles are
sufficiently abundant to dominate the erosion process. The
erosion rate of an object with a given mass m is then
determined by the abundance of all objects with masses less
than m/T' which is the mass required to produce catastrophical
break up of m and hence the nonlinear dependence of

R on m.

It can be seen, from Fig. 6, that R of a particle
increases with increasing particle mass. For large asteroids
having a mass of 1018Kg, the erosion rate is of the order
of a meter/106 Yr which is a Km in 109 years. There is no
way to check the accuracy of this figure, but we note that the
lunar highlands are saturated with craters of a size range
of tens of Km and smaller. Assuming most of these craters to
be of impact origin and that the highlands have an age of
the order of billions of years (and the maris are much younger),
we note that if the moon did not possess a gravitational field
it would surely be '"eroded" to a depth of several kilometers.
If the lunar impact environment has been comparable to that
of the large asteroids, our result in Fig. 5 appears to be
reasonable. In view of the fact that the impact environment
of the moon has probably been less severe than is the environ-
ment in the asteroidal belt, at least for a very long time in

the past our result in Fig. 5 appears to be reasonable.

The wvalues of é for small masses in Fig. 5 are not
realistic since attention was not given to the influence of
erosion by cometary meteoroids and spallation due to cosmic
rays. These processes have been estimated by Whipple (%967)

to give rise to an erosion rate not exceeding about 50 A/yr
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for stones. This upper limit is indicated in Fig. 5 as a
horizontal dashed line. While Whipple's estimate applied to
objects with orbits intersecting the earth's orbit, his

upper 1limit is still meaningful for particles in the asteroidal
belt if the erosive effect of cometary meteoroids in the
asteroidal belt 'is taken to be comparable to or lower than is
the case near earth.

Fig. 7 1s a double logarithmic plot of particle life-
times in years as a function of particle masses in Kg, as
given by the present model; shaded area is the range of the
systematic error because of the albedo¥*. The lifetime of an
object with respect to catastrophic collisions ch,is taken
as the inverse of the probability per unit time that the
obJect will experience a catastrophlic collision and 1s given
by (cf. discussion preceeding eq. 30)

1
v, (m) T v e-5/3
K J;/F, a3+ w32 . RE S

(65)

where o > 5/3 and where & 1is the result of performing
the indicated iteration:

1 -1 1 _M/B 0=5/3
o = _(_P__f__ +2 (r') Y

a-1 a-5/3 * a=5/3

*The reader should bear in mind that, as has been pointed
out. the shaded areas represent the ranges of systematic error
but not that of random error. This means that if there is
reason to revise downward the nominal value of asteroidal
albedos, then ALL of the life times (provided with shaded
areas) will have to be moved downwards from their nominal
values by the same factor in Fig. 7.
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Terms of the order of Mw-a+5/3 and smaller have been omitted.

It can be seen, from eq. 65, that ch(m) is the
mean collision time for particles of mass m with particles
of mass m/T' or greater. Eg. 65 is an upper limit since
during a time Téé
erode into smaller values and hence will have a smaller life-

the mass of the object will continuously

time with respect to catastrophic collisions because Toc
decreases with mass, as indicated by eq. 65. This reflects
the fact that, in the present model, the number of particles
that can cause a disruptive encounter(for a given cbject)
increases faster with decreasing particle mass than is the

corresponding decrease in the collision cross section.

The value Of'ch for the largest asteroids is of the
order of 109 years (cf. Fig. 7). If the average geometrical
albedo of .2 for the four largest asteroids is representative,
then the nominal curve for Toe is the correct value for the
asteroidal life times. It can be seen, from Fig. 7, that the
life time of the six largest asteroids with masses m > 1019Kg
is equal to or greater than 4 x 109 yr and therefore may have
survived since the time of their creation (presumably 4 x 103
years ago). The other asteroids have life times Toc shorter
than the life time of the solar system and may therefore be

collisional fragments.

The lifetime with respect to erosion is defined by
eq. 22 when the latter is integrated to obtain the particle
mass as a function of time. The result is

1 1/6 ' =~ _1/6 , 176 ]
T CAD AR ¥ S I AT AR Gl A
. 1/6 , \1/6
m - (r'u)

E ' K A

(66)
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where we have taken, somewhat arbitrarily, the time for an
object to erode to one half of its initial radius to repre-
sent the erosion lifetime g A population index o = 11/6 =
1.8333 has been used to facilitate integration. The loga-
rithmic term is significant only for masses approaching the
value T'py as can be seen from Fig. 7. The definition of
TE‘is seen therefore to be different from that of Toc since
the latter is the inverse probability of complete destruction

and represents, therefore, an effective lifetime.

It can be seen, from eq. 66, that 1. becomes infinite

as m approaches T'u . The time for a partic%e to lose all 1ts
mass is also infinite for the same reason. Physically this
happens because erosion stops for particles with masses smaller
than T'uy ; all collisions for such small particles are cata-
strophic.

We also plot, 1in Fig. 7, the particle lifetimes

with respect to the Poynting Robertson effect =t and the lower

PR

1imit of the lifetime of small objects T due to the influence

of cometary meteorocids and cosmic rays estimated by Whipple
(1967)- TL 1ok L

time for erosion of an object to one half it's radius. =

is defined here similarly to = namely 1. in the

is taken here as the time required for an object to traveige
radially one half of the asteroidal belt, because of radiation
damping. It can be seen, from the figure, that for particles
greater than about lO_SKg (or 1 mm in radius) the process of
catastrophic collision dominates the lifetime of the particles.
Smaller particles may'be subject to erosion by cometary
particles to an extent that this latter mechanism dominates.

Tb and T are seen to be insignificant for all particles

B PR

of reasonable size by comparison with Tog®
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Since TpR>> Tue OVEr the entire range of particle
masses, we see that our neglect of radiation damping in the
collision equation eq. 17 is Jjustified.

It can also be seen, from Fig. 7, that the lifetime
of the largest otjects is of the order of 109 yr. Some of
the large objects may therefore have escaped catastrophic col-
lisions in the past, but most others have not. For small
objects, having a mass of the order of perhaps 10_5 Kg or
smaller, the influence of collisions with cometary meteoroids
must be treated, before meaningful lifetimes for these parti-
cles can be estimated, and therefore the signifinance of the

curves in Fig. 7 for small masses is doubtful.

We now consider some aspects of self-consistency
of the present model. The present method is applicable to
masses smaller than about 1018 Kg which is the largest fragment
created when one of the largest objects, M_ having a mass of
about 1020 Kg is completely disrupted. This criterion is,
however, overly conservative because of the fhree asteroids
present with masses of about 1020 Kg (cf. with Fig. 4). The
presence of these large asteroids causes the effective value
of M_ (and consequently also AMw/P') to increase beyond the

value of 1020 Kg.

We now return to Fig. 4 and consider the significance
of the close agreement between the population index o = 1.837
of the steady state solution and that of the empirical fit,
o = 1.80 + .04. The following two possibilities may be noted:

(1) There is agreement between the empirical and the
theoretical population indices because the effective value

of Mm/r' is greater than is assumed in the model.

(2) Agreemeht between the theoretical and empirical
population indices for large asteroids is fortuitous.



BELLCOMM, INC. _ s -

Possibility (1) is plausible since an effective M
can be defined; using Table-1, one can write for the total

mass MT:

M, = AMS% (2-a)7t (67)

using a value for MT of 5 x 1020Kg which 1s the approximate

total value of the total mass of the fragments as well as the
mass of the three largest asteroids, ‘eq. 67 can be solved for
M_ . The result is an effective value for M_ of 1022 Kg, and
for AMm/E' of about 5 x 1019 Kg implying that all asteroids
with masées smaller than 5 x 1019 Kg are 1in a steady state
distribution. Physicaily this means that the influence of
the three largest asteroids on the distribution of smaller
objects may be approximated to be similar to the influence of
a fractional number of much larger objects when averaged over
a long period of time. While a detalled treatment of this
problem requires a more extensive analysis, the order of magni-
tude argument presented here is sufficient to establish

the validity of applying this collisional model to asteroids.

Possibility (2) implies that the large asteroids
are not in a steady state distribution. Since, however, masses
of the order of 1015 Kg or less are already in a steady state
condition (cf. with Fig. 5) because the rate of particle crea-
tion equals the rate of particle removal of these masses,
use of the density function eq. 62 appears justified for those
and smaller masses even 1f the statistical significance of the
largest asteroids is disregarded.
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VI. CONCLUSION

A collisional model of interplanetary particles is
formulated and applied to the distribution of asteroids and
their debris. An integro differential equatlon has been derived
which describes the collective dynaﬁical interaction of these

particles caused by inelastic collisions and fragmentation.

The collision =quation has been solved for the
particle number density function f(m) dm for the special
case when the distribution has reached steady state condi-
tions. The result is

-Q

f(m)dm = Am dm . (68)

The population index « equals 11/6 in a first approximation;
higher order terms contribute only slightly to o (cf. Table III).
The value of a is remarkably insensitive to the values of the
physical parameters; o changes from 1.834 to 1.843 when the
parameters I',T' and A change by a factor of 400.

It is shown in the text that this solution is
stable in the sense that if a in eq. 68 1s altered, an imbalance
between the particle creation and removal rates is introduced
which will cause the population index to return to it's
previous steady state value. It is furthermore shown (cf.
Fig. 2 and.3) that for steady state conditions without an
external source, the erosion rates have only a minor influence
on the population when compared with the rates of catastrophic

collisions and particle creation by fragmentation.

The results are then applied to the distribution of
asteroids and their debris. The theoretical number density
function for asteroids is (eq. 62).

f(m)dm = 2.48 x 1019 m_l'837 dm/meter3 (69)
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where the normalization constant is based on observation and
the population index 1.837 corresponds to steady state condi-
tions with a root mean square collisional velocity of 5 Km/sec.
A systematic error of about half an order of magnitude may be
present because pf incomplete knowledge of asteroidal albedos.

A least squares fit to the distribution of asteroids
(Fig. 4) catalogued by Kuiper et al (1958) yields an empirical
value for o of 1.80 + .04. The theoretical value of o is
therefore seen to be within the margin or error of the empirical
one.

Since the largest masses are not replenished the dis-
tribution (Fig. L) assumes a quasi steady state condition for
asteroids less than a given mass only (cf.Fig.5). The approximate
value of this mass depends on our choice for M_. The most
conservative choice of M_ is 1.88 x 1020Kg corresponding
to absolute photographic magnitude g = 4 in Fig. U4; this
implies steady state conditions for masses less than 1016 Kg.
Since the largest three observed asteroids cluster, they can be
redistributed artifically according to the theoretical dis-
tribution, eq.62 while keeping the total mass invariant. Such
a procedure approximates the physical influence of the three
largest masses on the dynamics of' the population of smaller
objeets. The results implies that all but the largest asteroids
have. reached steady state conditions.

Using eq. 69, a number of useful statistical properties
of asteroids can be calculated. The yearly total of asteroidal

mass crushed is about 1012 Kg/yr (Fig. 5). The amount of mass

, A1
lost yearly from the asteroidal belt is about 6 x. 10 0 Kg
but this figure may not be reliable because the influence on
the population of small particles by cometary meteoroids has

not been considered.
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The total mass of asteroids and their debris is about
2 X 1020Kg, where the three heaviest objects, of this same
order of magnlitude have not been properly included. When the
top masses are consldered, the total mass is of the order of
5 x 10°° Kg; 1t therefore follows that almost all of the mass

in the asteroidal belt is concentrated in the three heaviest objects.

The eroslon rate of an object in the asteroidal belt
(Fig. 6) is nonlinear. The rate of change in the effective
radius of the largest objects is about a meter/lo6 yr. This
rate decreases for smaller objects and for masses of about 106 Kg
the rate equals 50 A/yr which is the upper l1limit caused by erosion
of stones due to cometary particles and cosmic rays obtained by
Whipple (1967).

The particle life times with respect to catastrophilc
collisions Toe? erosion 1_ and radiation damping TPR have been
calculated (Fig. 7). Tee is found to be shorter than g by one
l»and a half orders of magnitude. Too is also very much shorter
than TpR for micron sized or larger particles. For the largest
asteroids, Too is of the order of 109 yr; these asteroids may
have survived relatively undamaged since the time of their creation.

)
/ o
1011-JSD-bl J.S. Dohnanyi
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Armstrong - MTX
Beckwith - MTP
Charak - RV-1
Cohen - RTP
Culbertson - MLA
D'Aiutolo - RV-1
Disher - MLD
Dixon - MTY
ubin - SG
Hall - MTG
Keegan -~ MA-2
Keller - RV-1
Lord -~ MTD
Phillips -~ MA
Raffensperger - MTE-
Relffel - MA-6
Schnyer - MTV
. Turnock - MT
. Waugh - MTP
Wild - MTE
Hq. Library - USS-10 (2)
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NASA Manned Spacecraft Center

NASA Goddard Space Flight Center

0.E. Berg - 613

' NASA Ames Research Center

Allen -~ D
. Baldwin - SST
. Farlow - SSP
Gault - SSP
Nysmith -~ SVHI
. Roberts ~ MAD (2)
. Swan - MS
Summers -~ SVHI

QU= m
= mm:::mu

NASA Jet Propulsion Laboratory

A.S.
L.D.

Beck
Jaffe

NASA Lewis Research Center
I.J. Loefflet - 2732

NASA Electronics Research Center

A.T. Lewis - CTR

K. Baker - ET34 ) Aerospace Croporation
P.B. Burbank - ET3

B. Cour-Palais - ET34 V.C. Frost

T. Giuli - TG5 .

D. Kessler - ET3A4 Andrews Air Force Base
H.A. Zook - TG2 ! H.W. Brandly

NASA Marshall Space Flight Center Baylor University

K W.M. Alexander

.5. Clifton - R-SSL-PM
C. Dalton - R-AERO~Y
K. Hudson - R-RP-P
.G. Johnson - I/I/1B-P
J. Naumann - R-RP-P

E. Smith - R-AERO-YS

NASA Langley Reserach Center

.M. Alvarez - AMPD

R. Davidson - 400

D. Davis, Jr. - AMPD
A. Gurtler - IRD

H. Kinard - AMP

H. Nelson - IRD

Bell Telephone Laboratory
A.A. Lundstrom

Cornell University
Center for Radioc Physics and
Space Resgearch

M. Harwit

Department of the Interior

S.F. Singer
Douglas Aircraft
J.K. Wall
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Dudley Observatory

C. Hemenway

General Motors Defense
Research Labs

A.C. Charters
J.W. Gehring

I.T.T. Research Institute
F. Narin

Johns Hopkins University
Department of Geology

M. Hallam

M.I.T. Lincoln Laboratory
I.I. Shapiro

Ohio State University
Physics Department

J. Korringa

Rice University
J.J.W. Rogers

Smithsonilan Astrophysical
Observatory

G.S5. Hawkins
R.E. McCrosky
W. Salisbury
R.B. Southworth
F.L. Whipple

TRW
J. Friichtenicht
University of California

Institute of Geophysics
and Planetary Physics

G.W. Wetherill

University of Chicago
Enrico Fermi Institute for
Nuclear Studies.

E. Anders

University of Florida
A.E.S. Green

University of Hawaii
Hawall Institute of Geophysics

J.L. Weinkterg

University of Maryland
Dept. of Physics and Astronomy

L.W. Bandermann
E.L. Opik

Bellcomm

Allen
Anderson
Boysen, Jr.
Chisholm
Davis

Downs
Gradle
Hagner
Havenstein
Hinners
Howard
James
Martersteck
McFarland
Menard
Orrok
Powers

Ross
Schmidt
Thomas
Tiffany
Timko
Tschirgi
Wagner

J.E., Waldo

A1l members Div. 101
Central File
Dept 1023
Library
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